For the matrix equatiion
[tex]2X+A=B[/tex]subtracting A from both sides gives
[tex]2X=B-A[/tex]now,
[tex]B-A=\begin{bmatrix}{-7} & {-8} & {} \\ {-2} & {6} & {} \\ {4} & {4} & {}\end{bmatrix}-\begin{bmatrix}{-3} & {0} & {} \\ {0} & {3} & {} \\ {-6} & {6} & {}\end{bmatrix}[/tex][tex]B-A=\begin{bmatrix}{-7--3} & {-8-0} & {} \\ {-2-0} & {6-3} & {} \\ {4--6} & {4-6} & {}\end{bmatrix}[/tex][tex]B-A=\begin{bmatrix}{-10} & {-8} & {} \\ {-2} & {-3} & {} \\ {10} & {-2} & {}\end{bmatrix}_{}[/tex]Hence,
[tex]2X=\begin{bmatrix}{-10} & {-8} & {} \\ {-2} & {-3} & {} \\ {10} & {-2} & {}\end{bmatrix}_{}[/tex]Dividing both sides by 2 gives
[tex]X=\begin{bmatrix}{-10} & {-8} & {} \\ {-2} & {-3} & {} \\ {10} & {-2} & {}\end{bmatrix}_{}\cdot\frac{1}{2}[/tex][tex]X=\begin{bmatrix}{-5} & {-4} & {} \\ {-1} & {-\frac{3}{2}} & {} \\ {5} & {-1} & {}\end{bmatrix}[/tex]which is our answer!