Respuesta :

Determine the value of expression by using the properties of the limit.

[tex]\begin{gathered} \lim _{x\to c}\frac{\lbrack f(x)\cdot g(x)\rbrack}{g(x)-f(x)}=\frac{\lim _{x\to c}\lbrack f(x)\cdot g(x)\rbrack}{\lim _{x\to c}\lbrack g(x)-f(x)\rbrack} \\ =\frac{\lim _{x\to c}f(x)\cdot\lim _{x\to c}g(x)}{\lim _{x\to c}g(x)-\lim _{x\to c}f(x)} \end{gathered}[/tex]

Subtitute the given values of the function for the given in the given expression.

[tex]\begin{gathered} \frac{\lim _{x\to c}f(x)\cdot\lim _{x\to c}g(x)}{\lim _{x\to c}g(x)-\lim _{x\to c}f(x)}=\frac{3\cdot(-6)}{-6-3} \\ =\frac{-18}{-9} \\ =2 \end{gathered}[/tex]

So answer is 2.

RELAXING NOICE
Relax