Given
3.1 cm diameter coin
25 cm from the concave lens
11 cm focal lens
Procedure
Below is a sketch how the image is created using a concave lens:
Equation(s) Needed:
[tex]\begin{gathered} \frac{1}{o}+\frac{1}{i}=\frac{1}{f} \\ \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \end{gathered}[/tex]Solution
[tex]\begin{gathered} \frac{1}{i}=\frac{1}{-11}-\frac{1}{-25} \\ i=-7.64\text{ cm} \end{gathered}[/tex]The negative sign means that the image is virtual.
(b)
[tex]\begin{gathered} \frac{h}{i}=\frac{H}{o} \\ h=\frac{H}{o}\cdot i \\ h=3.1\text{ cm}\cdot\frac{7.64\text{ cm}}{25\text{ cm}} \\ h=0.95\text{ cm } \end{gathered}[/tex]0.95 cm - the diameter of the coin’s image
Final answer:
L-ocation: -7.64 cm
O-rientation: Inverted
S-ize: 0.95 cm
T-ype: Virtual