Find the distance between each pair of points. Round your answer to the nearest tenth, if necessary. Hint: Use the Pythagorean Theorem

The distance between two points on the plane is given by the formula below
[tex]\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}[/tex]Therefore, in our case,
[tex]A=(-1,-3),B=(5,2)[/tex]Thus,
[tex]\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}[/tex]Therefore, the answer is sqrt(61)
In general,
[tex]-(-n)=n[/tex]Remember that
[tex]-n=(-1)\cdot n[/tex]Therefore,
[tex]\begin{gathered} a-(-n)=a+(-1)(-n)=a+(-1)(-1\cdot n)=a+(-1)^2\cdot n=a+1\cdot n=a+n \\ \Rightarrow a-(-n)=a+n \end{gathered}[/tex]