Given tan theta= 24/7 and sec theta=25/7, which of the following can be proven using a Pythagorean identity?

Explanation
In trigonometry,
[tex]1+tan^2\theta=sec^2\theta[/tex]Since we know;
[tex]tan\theta=\frac{24}{7}\text{ }and\text{ }sec\theta=\frac{25}{7}[/tex]Therefore, the Pythagorean identity will be transformed to give
[tex]1+(\frac{24}{7})^2=(\frac{25}{7})^2[/tex]Answer: Option D