Respuesta :

Knowing that two secants are drawn to a circle from an exterior point, you need to use the Intersecting Secant Theorem.

Based on the Intersecting Secant Theorem, you can write the following equation:

[tex]EZ\cdot EW=EX\cdot EY[/tex]

Knowing that:

[tex]\begin{gathered} EZ=16.8 \\ EX=14 \\ EW=35 \end{gathered}[/tex]

Substitute those values into the equation:

[tex](16.8)(35)=(14)\cdot EY[/tex]

Solve for EY:

[tex]\begin{gathered} 588=14EY \\ EY=\frac{588}{14} \\ EY=42 \end{gathered}[/tex]

Notice that:

[tex]EY=EX+XY[/tex]

Then you can substitute values and solve for XY:

[tex]\begin{gathered} 42=14+XY \\ 42-14=XY \\ XY=28 \end{gathered}[/tex]

The answer is:

[tex]XY=28[/tex]

RELAXING NOICE
Relax