Explanation
The area of a circular sector is given by:
[tex]\text{Area}_{cir\sec }=\pi r^2\cdot(\frac{\Theta}{360})[/tex]where r is the radius and theta is the angle
then
Let
angle=36
radius=13
now ,replace.
[tex]\begin{gathered} \text{Area}_{cir\sec }=\pi r^2\cdot(\frac{\Theta}{360}) \\ \text{Area}_{cir\sec }=\pi(13)^2\cdot(\frac{36}{360}) \\ \text{Area}_{cir\sec }=\pi\cdot169\cdot(\frac{36}{360}) \\ \text{Area}_{cir\sec }=53.0929 \\ \text{rounded} \\ \text{Area}_{cir\sec }=53.09\text{ square units} \end{gathered}[/tex]I hope this helps you