Respuesta :

[tex]\text{Area}_{cir\sec }=53.09\text{ square units}[/tex]

Explanation

The area of a circular sector is given by:

[tex]\text{Area}_{cir\sec }=\pi r^2\cdot(\frac{\Theta}{360})[/tex]

where r is the radius and theta is the angle

then

Let

angle=36

radius=13

now ,replace.

[tex]\begin{gathered} \text{Area}_{cir\sec }=\pi r^2\cdot(\frac{\Theta}{360}) \\ \text{Area}_{cir\sec }=\pi(13)^2\cdot(\frac{36}{360}) \\ \text{Area}_{cir\sec }=\pi\cdot169\cdot(\frac{36}{360}) \\ \text{Area}_{cir\sec }=53.0929 \\ \text{rounded} \\ \text{Area}_{cir\sec }=53.09\text{ square units} \end{gathered}[/tex]

I hope this helps you

Ver imagen DonnaS131225
ACCESS MORE
EDU ACCESS
Universidad de Mexico