As given by the question
There are given that the system of the equation:
[tex]\begin{gathered} -3x+7y=-16\ldots(1) \\ -9x+5y=16\ldots(2) \end{gathered}[/tex]Now,
From the equation (1):
[tex]\begin{gathered} -3x+7y=-16 \\ -3x=-16-7y \\ x=\frac{16}{3}+\frac{7}{3}y\ldots(3) \end{gathered}[/tex]Put the value of equation (3) into equation (2)
So,
[tex]\begin{gathered} -9(\frac{16}{3}+\frac{7}{3}y)+5y=16 \\ -3(16+7y)+5y=16 \\ -48-21y+5y=16 \\ -48-16y=16 \\ -16y=64 \\ y=-4 \end{gathered}[/tex]Then,
Put the value of y into the equation (3)
So,
[tex]\begin{gathered} x=\frac{16}{3}+\frac{7}{3}y \\ x=\frac{16}{3}+\frac{7}{3}(-4) \\ x=\frac{16}{3}-\frac{28}{3} \\ x=\frac{16-28}{3} \\ x=-\frac{12}{3} \\ x=-4 \end{gathered}[/tex]Hence, the value of x is -4 and the value of y is -4.