Let the smaller number be 'x' and the larger number be 'y'.
Given that the sum of the numbers is 60,
[tex]\begin{gathered} x+y=60 \\ y=60-x \end{gathered}[/tex]Also, given that the larger number is 6 more than the smaller number,
[tex]y=x+6[/tex]Substitute the value,
[tex]x+6=60-x[/tex]Taking the variables and constants on either side,
[tex]\begin{gathered} x+x=60-6 \\ 2x=54 \end{gathered}[/tex]Divide both sides by 2,
[tex]\begin{gathered} \frac{2x}{2}=\frac{54}{2} \\ x=27 \end{gathered}[/tex]Substitute this value and obtain the other variable,
[tex]\begin{gathered} y=60-27 \\ y=33 \end{gathered}[/tex]Thus, the larger number is 33 and the smaller number is 27.