Solution
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given parameters
[tex]\begin{gathered} \sigma=68.7 \\ C.I=98\% \\ n=? \end{gathered}[/tex]STEP 2: Get the z-score for the given Confidence interval
98% confidence is equivalent to 2.33 standard deviations. So you want $1 = 2.33 σ. That tells us the standard deviation of the sample mean needs to be:
[tex]\frac{1}{2.33}=0.429184549[/tex]The standard deviation of the sample mean is equal to:
[tex]\frac{68.7}{\sqrt{n-1}}[/tex]This implies that:
[tex]\frac{68.7}{\sqrt{n-1}}=0.429184549[/tex]STEP 3: Solve the equation for n
[tex]\begin{gathered} \frac{68.7}{\sqrt{n-1}}=0.429184549 \\ \sqrt{n-1}=\frac{68.7}{0.429184549} \\ \\ \sqrt{n-1}=160.071 \end{gathered}[/tex]Find the square of both sides:
[tex]\begin{gathered} (\sqrt{n-1})^2=160.071^2 \\ n-1=25622.72504 \\ Add\text{ 1 to both sides} \\ n=25622.72504+1=25623.72504 \\ n\approx25624 \end{gathered}[/tex]