Respuesta :

To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:

[tex]\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}[/tex]

For the given function:

[tex]f(x)=2x^2-10x-3[/tex][tex]x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}[/tex][tex]x=\frac{10\pm\sqrt[]{100+24}}{4}[/tex][tex]\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\ \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\ \end{gathered}[/tex][tex]\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\ \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}[/tex][tex]\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\ \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}[/tex]

Then, the zeros of the given quadratic function are:

[tex]\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\ \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}[/tex]

Answer: Third option

ACCESS MORE
EDU ACCESS
Universidad de Mexico