hello
the points given are (-4, 47) and (2, -16)
let's find the intercept of this equation
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ x_2=2 \\ y_2=-16 \\ y_1=47 \\ x_1=-4 \end{gathered}[/tex][tex]\begin{gathered} m=\frac{-16-47}{2-(-4)} \\ m=-\frac{21}{2} \\ slope=-\frac{21}{2} \end{gathered}[/tex]now, since we know the value of the slope, we can use that in the standard equation on a straight line
the standard equation of a straight line is given as
[tex]\begin{gathered} y=mx+c \\ m=\text{slope} \\ c=\text{intercept} \end{gathered}[/tex]we can pick any of the points and solve for intercept
let's use (2, -16)
[tex]\begin{gathered} x=2 \\ y=-16 \\ y=mx+c \\ m=-\frac{21}{2} \\ -16=-\frac{21}{2}(2)+c \\ -16=-21+c \\ \text{collect like terms} \\ c=-16+21 \\ c=5 \end{gathered}[/tex]now we know the value of intercept (c) = 5 and the slope (m) = 21/2
let's use this to write equation of the straight line
[tex]\begin{gathered} y=mx+c \\ y=-\frac{21}{2}x+5 \end{gathered}[/tex]from the calculations above, the equation of the straight line is given as y = -21/2x + 5