Respuesta :

Given that the diameter of the cylinder i 1d = 9 inches and the height is 2h =1 inches.

The adisuswill be r, r = d/2

r = 19/2 inches

Now,

A). The lateral surface area of the cylinder is given as

[tex]LSA=2\pi rh[/tex]

On puttingthe values we have

[tex]\begin{gathered} LSA=2\times\frac{22}{7}\times\frac{19}{2}\times21\text{ sq inches} \\ LSA=22\times19\times3\text{ sq inches} \\ LSA=1254\text{ sq inches} \end{gathered}[/tex]

Hence, the lateral surface area is 1254 sq inches.

B). The volume of the cylinder is

[tex]Volume=\pi r^2h[/tex]

On putting the values we have

[tex]\begin{gathered} V=\frac{22}{7}\times\frac{19}{2}\times\frac{19}{2}\times21\text{ cubic inches} \\ V=\frac{11\times19\times19\times3}{2}\text{ cubic inches} \\ V=5956.5\text{ cubic inches} \end{gathered}[/tex]

Hence, the volume will be 5956.5 cubc inches.

ACCESS MORE
EDU ACCESS
Universidad de Mexico