You know that the two water tanks the farmer has, drain at a rate of 2.5 gallons per minute.
You also know that Model S and ModelT hold 100 gallons of water each.
• Knowing the values given in the table for the tank Model S, you can find the its drainage rate as following:
Use the following formula:
[tex]r_S=\frac{y_2-y_1}{x_{2-}x_1}[/tex]Using the information given in the table, you can set up that:
[tex]\begin{gathered} y_2=100 \\ y_1=82 \\ _{} \\ x_2=0 \\ _{}x_1=6 \end{gathered}[/tex]Substituting values into the formula and evaluating, you get:
[tex]r_S=\frac{100-82}{0-6}=\frac{18}{-6}=\frac{6}{-2}=-3[/tex]• Analyzing the graph given of Model T drainage rate, you can use the same formula:
[tex]r_T=\frac{y_2-y_1}{x_{2-}x_1}[/tex]In this case you know these points on the line:
[tex](0,100);\mleft(4,86\mright)[/tex]Then you can set up that:
[tex]\begin{gathered} y_2=100 \\ y_1=86 \\ x_2=0 \\ x_1=4 \end{gathered}[/tex]Substituting values and evaluating, you get:
[tex]r_T=\frac{100-86}{0-4}=\frac{14}{-4}=\frac{7}{-2}=-3.5_{}_{}[/tex]Therefore, notice that:
- Model S Drainage rate is:
[tex]3\text{ }\frac{gallons}{minute}[/tex]- Model T Drainage rate is:
[tex]3.5\text{ }\frac{gallons}{minute}[/tex]The answer is: Model S and Model T drain faster than the existing tanks.