ANSWER:
(a) 1698 bacterias
(b)
[tex]P=1698\cdot(0.88)^t[/tex](c) 473 bacterias
STEP-BY-STEP EXPLANATION:
(a)
We can propose the following equation of the statement to calculate the initial number of bacteria, just like this:
[tex]\begin{gathered} 1157=I\cdot(1-0.12)^3 \\ \text{ solving for I } \\ I=\frac{1157}{\mleft(0.88\mright)^3} \\ I=1697.79\cong1698 \end{gathered}[/tex](b)
Therefore, the function would be:
[tex]P=1698\cdot(0.88)^t[/tex](c)
The number of bacteria after 10 days will be:
[tex]\begin{gathered} P=1698\cdot(0.88)^{10} \\ P=472.89\cong473 \end{gathered}[/tex]