The formula for the length of an arc(l) is,
[tex]l=\frac{\theta}{360^0}\times2\pi r[/tex]
Given data
[tex]\begin{gathered} \theta=108^0 \\ \pi=3.14 \\ r=\text{radius}=10\operatorname{cm} \end{gathered}[/tex]
Solving for the length of the arc
[tex]\begin{gathered} l=\frac{108^0}{360^0}\times2\times3.14\times10cm \\ l=0.3\times2\times3.14\times10\operatorname{cm} \\ l=18.84\operatorname{cm}\approx18.8\operatorname{cm}(\text{nearest tenth)} \\ \therefore l=18.8\operatorname{cm} \end{gathered}[/tex]
Hence, the length of the arc is 18.8cm.
The correct option is Option D.