Respuesta :

Given:

AB=9cm, AC=y, BC=z, and the angle ABC = 61.2 degrees.

XZ=21.3ft, XY=x, YZ=y, and the angle XYZ = 66.4 degrees.

Required:

We need to find unknown sides.

Explanation:

Consider the triangle ABC.

AB is the hypotenuse, BC is the adjacent side, and AC is the opposite side.

Use sine formula.

[tex]sin\theta=\frac{opposite\text{ side}}{hypotenuse}[/tex][tex]Substitute\text{ }\theta=61.2\degree\text{ opposite side =y, and hypotenuse = 9cm in the formula.}[/tex][tex]sin61.2\degree=\frac{y}{9}[/tex][tex]y=9sin61.2\degree[/tex][tex]y=7.9\text{ cm}[/tex]

Use the cosine formula.

[tex]cos\theta=\frac{adjacent\text{ side}}{hypotenuse}[/tex][tex]Substitute\text{ }\theta=61.2\degree\text{ adjacent side =x, and hypotenuse = 9cm in the formula.}[/tex][tex]cos61.2\degree=\frac{x}{9}[/tex][tex]x=9cos61.2\degree[/tex][tex]x=4.3cm[/tex]

We get x =4.3 cm and y = 7.9 cm.

Consider the triangle XYZ.

YZ is the hypotenuse, XY is the adjacent side, and XZ is the opposite side.

Use sine formula.

[tex]sin\theta=\frac{opposite\text{ side}}{hypotenuse}[/tex][tex]Substitute\text{ }\theta=66.4\degree\text{ opposite side =21.3, and hypotenuse = y in the formula.}[/tex][tex]sin66.4=\frac{21.3}{y}[/tex][tex]y=\frac{21.3}{sin66.4}[/tex][tex]y=23.2ft[/tex]

Use the cosine formula.

[tex]cos\theta=\frac{adjacent\text{ side}}{hypotenuse}[/tex][tex]Substitute\text{ }\theta=66.4\degree\text{ adjacent side =x, and hypotenuse = 23.2 in the formula.}[/tex][tex]cos66.4\degree=\frac{x}{23.2}[/tex][tex]x=23.2cos66.4\degree[/tex][tex]x=9.3ft[/tex]

Final answer:

1)

[tex]x=4.3cm[/tex]

[tex]y=7.9\text{ cm}[/tex]

2)

[tex]x=9.3ft[/tex]

[tex]y=23.2ft[/tex]
Ver imagen ChicagoW1148
ACCESS MORE
EDU ACCESS
Universidad de Mexico