Respuesta :

The explicit formula for an arithmetic sequence can be written in the form;

[tex]a_n=a_1+(n-1)d[/tex]

Where;

[tex]\begin{gathered} a_1=first\text{ term} \\ d=\text{common difference of the arithmetic sequence} \end{gathered}[/tex]

for the given arithmetic sequence;

[tex]\begin{gathered} a_1=75 \\ d=73-75 \\ d=-2 \end{gathered}[/tex]

Therefore, the explicit formula can be written as;

[tex]\begin{gathered} a_n=75+(n-1)(-2) \\ a_n=75-2(n-1) \\ a_n=75-2n+2 \\ a_n=75+2-2n \\ a_n=77-2n \end{gathered}[/tex]

The explicit formula is;

[tex]a_n=77-2n[/tex]

RELAXING NOICE
Relax