In order to find the confidence interval for a proportion, we can use the formula below:
[tex]CI=p\pm z\cdot\sqrt{\frac{p(1-p)}{n}}[/tex]Where p is the probability of success.
For a confidence interval of 99.9%, the critical value is z = 3.291.
Using n = 185 and p = 118/185, we have:
[tex]\begin{gathered} CI=\frac{118}{185}\pm3.291\cdot\sqrt{\frac{\frac{118}{185}\cdot\frac{67}{185}}{185}}\\ \\ CI=\frac{118}{185}\pm3.291\cdot0.035336\\ \\ CI=0.63784\pm0.11629\\ \\ CI=(0.522,0.754) \end{gathered}[/tex]Therefore the answer is 0.522 < p < 0.754.