Given:
a triangular farm is shown as below
Find:
we have to find the answer from part (a) to part (e) as asked in the question.
Explanation:
(a) we know, in a triangle, the sum of all the angle is 180° .
Therefore,
∠C + 52° + 60° = 180°
∠C + 112° = 180°
∠C = 180° - 112°
∠C = 68°
Therefore, the size of angle BCA is 68°.
.......................................................................................................................
(b) (i) Let AC = b meter and BC = a meter
Therefore by law of sines, we get
[tex]\begin{gathered} \frac{AC}{sin60^o}=\frac{AB}{sin68^o} \\ \frac{b}{\frac{\sqrt{3}}{2}}=\frac{300}{0.9272} \\ b=\frac{300}{0.9272}\times\frac{\sqrt{3}}{2} \\ b=280.21\text{ }m \end{gathered}[/tex]
Therefore, distance from A to C is 280.21 m.
.......................................................................................................................................
(b)(ii)
Now, again by laws of sines
[tex]\begin{gathered} \frac{BC}{sin52^o}=\frac{300}{sin68^o} \\ \frac{a}{0.7880}=\frac{300}{0.9272} \\ a=\frac{300}{0.9272}\times0.7880 \\ a=254.96\text{ }m \end{gathered}[/tex]
Therefore, the distance from B to C is 254.96 m.
.......................................................................................................................
(b)(iii)
The length of perimeter of farm is = 300 + 280.21 + 254.96 = 835.17 m
......................................................................................................................................
(c) The cost of fencing is $150 per meter.
The total cost of fencing the whole perimeter of the farm is
= 150 × 835.17 = $125275 (by rounded to the nearest dollar)
...................................................................................................................................
(d)
Draw a line CD perpendicular to AB as shown below
Now, in triangle ACD, we have
[tex]\begin{gathered} sin52^=\frac{CD}{AC} \\ 0.7880=\frac{CD}{280.21} \\ CD=0.7880\times280.21 \\ CD=221.59\text{ }m \end{gathered}[/tex]
Now the area of triangular farm is
[tex]\begin{gathered} Area=\frac{1}{2}\times AB\times CD \\ Area=\frac{1}{2}\times300\times221.59 \\ Area=33238.5\text{ }m^2 \end{gathered}[/tex]
Therefore, Area of the triangular farm is 33238 square metre.
...................................................................................................................
(e)
we know the shortest distance between two points is straight line.
Therefore, the shortest distance between House C and river bank AB is CD = 221.59 metre.
.....................................................................................................................