AB =+atio:22. Little to big ratio:23. Little to bigА.x + 115 B96MMm1212x + 5DHРNProportion to solve for x:Proportion to se for x:Gdt.lvX =X =AC =MN =

Question 22.
Given:
• LQ = 9
,• QP = 12
,• LM = 6
• LN = x
Let's solve for x and MN.
Here, both triangles are similar.
To solve for the missing sides, apply the proportionality equation.
We have:
[tex]\frac{LP}{LQ}=\frac{LM}{LN}[/tex]• Where:
LP = LQ + QP = 9 + 12 = 21
• Input values into the equation and solve for x:
[tex]\frac{21}{9}=\frac{x}{6}[/tex]• Cross multiply:
[tex]\begin{gathered} 9x=21\ast6 \\ \\ 9x=126 \end{gathered}[/tex]• Divide both sides by 9:
[tex]\begin{gathered} \frac{9x}{9}=\frac{126}{9} \\ \\ x=14 \end{gathered}[/tex]The value of x = 14.
To solve for MN, we have:
LN = LM + MN
MN = LN - LM
MN = 14 - 6
MN = 8
ANSWER:
• Proportion to solve x:
[tex]\frac{21}{9}=\frac{x}{6}[/tex]• x = , 14
• MN = , 8