Answer:
8.9 x 10^(19) electrons
Explanation:
First, we need to calculate the charge that passes through the conductor. It can be calculated as:
[tex]\begin{gathered} I=\frac{Q}{t} \\ \\ Q=I\cdot t \end{gathered}[/tex]Replacing I = 9.50 A and t = 1.50 s, we get:
[tex]\begin{gathered} Q=(9.50\text{ A\rparen\lparen1.50 s\rparen} \\ Q=14.25\text{ C} \end{gathered}[/tex]Then, the charge of 1 electron is 1.6 x 10^(-19) C, so we can calculate the number of electrons as
[tex]\frac{14.25\text{ C}}{1.6\times10^{-19}C\text{ /electron}}=8.9\times10^{19}\text{ electrons}[/tex]Therefore, the number of electrons is 8.9 x 10^19