Given:
The length of the aluminum beam, L=10.0 m
The initial temperature, T₁=25.0 °C
The final length of the beam, l=10.0.12 m
The coefficient of linear expansion, α=2.40×10⁻⁵/°C
To find:
The final temperature of the beam.
Explanation:
The coefficient of linear expansion is given by,
[tex]\begin{gathered} \alpha=\frac{\Delta L}{L\Delta T} \\ =\frac{(l-L)}{L\times\Delta T} \end{gathered}[/tex]On substituting the known values,
[tex]\begin{gathered} 2.40\times10^5=\frac{(10.012-10)}{10\times\Delta T} \\ \Rightarrow\Delta T=\frac{(10.012-10)}{10\times2.40\times10^{-5}} \\ =50\text{ }\degree C \end{gathered}[/tex]The change in the temperature is given by,
[tex]\Delta T=T_2-T_1[/tex]Where T₂ is the final temperature of the beam.
On substituting the known values,
[tex]\begin{gathered} 50=T_2-25.0 \\ \Rightarrow T_2=50+25 \\ =75.0\text{ }\degree C \end{gathered}[/tex]Final answer:
The final temperature of the beam is 75.0 °C