First, we count the number of ways we can arrange the digits. The first number has 9 possibilities:
[tex]1\text{ to 9,}[/tex]the other digits have 10 possibilities each:
[tex]0\text{ to 10.}[/tex]Therefore, the number of ways we can arrange the digits is:
[tex]9*10*10*10=9*10^3=9000.[/tex]Now, for the letters, the order matters, therefore, we can use the permutation formula:
[tex]P(6,4)=\frac{6!}{(6-4)!}=360.[/tex]Finally, the total possible number of IDs is:
[tex]9000*360=3240000.[/tex]