SOLUTION:
Step 1:
In this question, we are to solve the quadratic equation using the graphical method:
[tex]5x^2+8x\text{ -13 = 0}[/tex]Step 2:
The line of symmetry is given as:
[tex]\begin{gathered} x\text{= }\frac{-b}{2a} \\ \text{where a = 5 , b = 8} \\ x\text{ =}\frac{-8}{2(5)} \\ x\text{ =}\frac{-8}{10} \\ x\text{ = }\frac{-4}{5} \end{gathered}[/tex]Step 3:
Now, the graph of the quadratic equation
[tex]5x^2+\text{ 8 x - 13 = 0}[/tex]and the line of the symmetry,
[tex]x=\frac{-4}{5}[/tex]is given as follows:
Part B:
For the y -coordinate of the vertex of the quadratic function:
[tex]5x^2+8x-13\text{ =0}[/tex]is as follows:
Hence, the vertex of the y-coordinate is:
[tex](-0.8,\text{ -16. 2)}[/tex]