Let n be the integer. Then, we can write the following equation
[tex]n(n+1)=90[/tex]which is equal to
[tex]n^2+n-90=0[/tex]We can solve this quadratic function by applying the quadratic formula:
[tex]n=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where in our case a=1, b=1 and c= -90. By substituting these values into the last formula, we get
[tex]n=\frac{-1\pm\sqrt[]{1^2-4(1)(-90)}}{2(1)}[/tex]then, we have
[tex]\begin{gathered} n=\frac{-1\pm\sqrt[]{1+360}}{2} \\ n=\frac{-1\pm\sqrt[]{361}}{2} \\ n=\frac{-1\pm19}{2} \end{gathered}[/tex]Then, the first solution is
[tex]\begin{gathered} n=\frac{-1+19}{2} \\ n=\frac{18}{2} \\ n=9 \end{gathered}[/tex]and the second solution is
[tex]\begin{gathered} n=\frac{-1-19}{2} \\ n=-\frac{20}{2} \\ n=-10 \end{gathered}[/tex]Then, we have the following solutions:
- Negative integer: n= - 10
- Positive integer: n=9