Given:
There are given the quadratic equation:
[tex]x^2+16x+59=0[/tex]
Explanation:
To find the value of x by using completing the square, first, we need to subtract 59 on both sides of the given equation:
So,
From the given equation:
[tex]\begin{gathered} x^2+16x+59=0 \\ x^2+16x+59-59=0-59 \\ x^2+16x=-59 \end{gathered}[/tex]
Now,
Take half of the x term and square it:
So,
From the x term,
[tex]\lbrack16\cdot\frac{1}{2}\rbrack^2=64[/tex]
Then,
Add 64 on both sides of the above equation.
So,
[tex]\begin{gathered} x^2+16x=-59 \\ x^2+16x+64=-59+64 \\ x^2+16x+64=5 \\ (x+8)^2=5 \end{gathered}[/tex]
Hence, an option first is correct:
[tex](x+8)^2=5[/tex]
Now,
From the above square:
[tex]\begin{gathered} (x+8)^2=5 \\ x+8=\pm\sqrt[]{5} \end{gathered}[/tex]
Then,
Subtract 8 from both sides of the equation;;
So,
[tex]\begin{gathered} x+8=\pm\sqrt[]{5} \\ x+8-8=\pm\sqrt[]{5}-8 \\ x=\pm\sqrt[]{5}-8 \\ x=\sqrt[]{5}-8,\pm\sqrt[]{5}-8 \\ x=-5.7639,-10.236067 \end{gathered}[/tex]
Final answer:
Hence, the value of x is shown below:
[tex]x=(-5.76,-10.24)[/tex]