Solution:
Given:
[tex]f(x)=x(x+3)(x+2)^2[/tex]To get the zeros, the zeros exist when f(x) = 0
[tex]\begin{gathered} 0=x(x+3)(x+2)^2 \\ x=0 \\ Multiplicity=1\text{ \lparen odd multiplicity\rparen} \\ \\ \\ x+3=0 \\ Hence,\text{ }x=-3 \\ Multiplicity=1\text{ \lparen odd multiplicity\rparen} \\ \\ \\ (x+2)^2=0 \\ (x+2)(x+2)=0 \\ x=0-2 \\ x=-2\text{ \lparen twice\rparen} \\ Multiplicity=2\text{ \lparen even multiplicity\rparen} \end{gathered}[/tex]To get the behavior of the graph, the rule below applies;
The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will cross the x-axis at zeros with odd multiplicities.
The graph of the function showing the x-intercepts and the behavior of the zeros is shown;
Therefore, in conclusion:
[tex]x=0,cross;x=-3,cross;x=-2,touch[/tex]