1) Considering that this sequence is defined by the following recursive formula, we can write out the following about it:
[tex]\begin{gathered} a_1=25 \\ a_{k+1}=a_k-5 \\ a_2=a_1-5,a_2=25-5,a_2=20 \\ a_3=20-5,a_3=15 \\ a_4=15-5,a_4=10 \\ a_5=10-5,a_5=5 \\ 25,20,15,10,5. \\ \end{gathered}[/tex]2) Note that from the recursive formula we can gather the common difference is -5.
3) Therefore, we can write out the following explicit formula:
[tex]\begin{gathered} a_n=25-5n \\ a_n=25-5n \end{gathered}[/tex]