Determine all values of x that make the expression true. work in the space provided.

The equation is given as shown below:
[tex]\frac{2}{x-3}=\frac{x+4}{x}[/tex]Step 1
Apply fraction cross multiply, defined as:
[tex]\begin{gathered} If \\ \frac{a}{b}=\frac{c}{d} \\ \text{then} \\ a\cdot d=b\cdot c \end{gathered}[/tex]Thus, we have:
[tex]\Rightarrow2x=(x-3)(x+4)[/tex]Step 2
Expand the right-hand side of the equation using the FOIL method given to be:
[tex](a+b)(c+d)=ac+ad+bc+bd[/tex]Thus, we have:
[tex](x-3)(x+4)=x^2+4x-3x-12=x^2+x-12[/tex]Therefore, the expression becomes:
[tex]2x=x^2+x-12[/tex]Step 3
Write out the equation in the standard form of a quadratic equation given to be:
[tex]ax^2+bx+c=0[/tex]Hence, we have:
[tex]\begin{gathered} x^2+x-2x-12=0 \\ x^2-x-12=0 \end{gathered}[/tex]Step 4
Solve using the quadratic formula given to be:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]Given
[tex]\begin{gathered} a=1 \\ b=-1 \\ c=-12 \end{gathered}[/tex]Hence, we have:
[tex]\begin{gathered} x=\frac{-(-1)\pm\sqrt[]{(-1)^2-(4\times1\times\lbrack-12\rbrack)}}{2\times1}=\frac{1\pm\sqrt[]{1+48}}{2}=\frac{1\pm\sqrt[]{49}}{2} \\ x=\frac{1\pm7}{2} \end{gathered}[/tex]Therefore, the values of x can be:
[tex]\begin{gathered} x=\frac{1+7}{2}=\frac{8}{2}=4 \\ or \\ x=\frac{1-7}{2}=\frac{-6}{2}=-3 \end{gathered}[/tex]Therefore, the possible solutions to the equation are:
[tex]x=4,x=-3[/tex]Step 5
Check for undefined points. This we can do by equating the denominator of the equation to zero.
Therefore, the undefined points are at:
[tex]\begin{gathered} x-3=0 \\ \therefore \\ x=3 \end{gathered}[/tex]or
[tex]x=0[/tex]ANSWER
Combining the solution and the undefined points, given that none of the solutions are at the undefined points, the solution to the expression is given to be:
[tex]x=4,x=-3[/tex]