ABC~JKL with altitudes BX & KY. Find BXa. 19.2b. 21c. 24.6d. 28

SOLUTION:
Step 1:
In this question, we are given the following:
ABC~JKL with altitudes BX & KY. Find BX
a. 19.2
b. 21
c. 24.6
d. 28
Step 2:
From the question, we can see that using similar triangles:
ABC~JKL with altitudes BX & KY
[tex]\begin{gathered} \frac{AB}{\text{JK}}\text{ }=\text{ }\frac{BX}{KY} \\ \text{where:} \\ AB\text{ = 32} \\ JK\text{ = 10} \\ KY\text{ = 6} \\ BX\text{ = ?} \end{gathered}[/tex]Step 3:
Computing this, we have that:
[tex]\begin{gathered} \frac{32}{10}=\frac{BX}{6} \\ \end{gathered}[/tex]cross-multiply, we have that:
[tex]\begin{gathered} 10BX\text{ = 32 x 6} \\ \text{Divide both sides by 10, we have that:} \\ BX\text{ =}\frac{32X\text{ 6}}{10} \\ BX\text{ = }\frac{192}{10} \\ BX\text{ = 19. 2 (OPTION A)} \end{gathered}[/tex]