Respuesta :

we have the equation

[tex]3^{(x-1)}=2[/tex]

Solve for x

Apply log on both sides

[tex]\log 3^{(x-1)}=\log 2[/tex]

Applying property of log

[tex]\begin{gathered} (x-1)\cdot\log 3^{}=\log 2 \\ x-1=\frac{\log 2}{\log 3} \\ \\ x=\frac{\log2}{\log3}+1 \end{gathered}[/tex]

therefore

the answer is

[tex]x=\frac{\log2}{\log3}+1[/tex]

RELAXING NOICE
Relax