Respuesta :
Given
x: Horizontal distance
x = 8 m
y: vertical distance
y = 11 m
Hit the target at the peak of the trajectory
Procedure
Let's first make a diagram of the situation.
Projectile Motion
Parabolic motions can be analyzed as the superposition of a horizontal motion and a vertical motion. Let's first analyze the vertical movement, which is very similar to free fall. Recall that the maximum point of the velocity at y is equal to 0 and from here we can calculate the y-component of the velocity.
[tex]\begin{gathered} v^2_{fy}=v^2_{oy}-2gy \\ 0=v^2_{oy}-2gy \\ v_{oy}=\sqrt[]{2\cdot g\cdot y}_{} \\ v_{oy}=\sqrt[]{2\cdot9.8\cdot6} \\ v_{oy}=10.84\text{ m/s} \end{gathered}[/tex]Now we can calculate the time it takes to go to the maximum point.
[tex]\begin{gathered} v_{fy}=v_{oy}-gt \\ 0=v_{oy}-gt \\ t=\frac{v_{oy}}{g} \\ t=\frac{10.84\text{ m/s}}{9.8m/s^2} \\ t=1.10\text{ s} \end{gathered}[/tex]Finally we can calculate the velocity in x
[tex]\begin{gathered} v_{ox}=\frac{x}{t} \\ v_{ox}=\frac{8m}{1.10s} \\ v_{ox}=7.23\text{ m/s} \end{gathered}[/tex]We have the x and y components of the initial velocity. Now we can calculate the magnitude and the angle.
[tex]\begin{gathered} v^2_o=v^2_{ox}+v^2_{oy} \\ v_o=\sqrt[]{10.84^2+7.22^2} \\ v_o=13.03\text{ m/s} \end{gathered}[/tex][tex]\begin{gathered} \tan \theta=\frac{\text{v}_{oy}}{v_{ox}} \\ \theta=\tan ^{-1}(\frac{10.84\text{ m/s}}{7.22\text{ m/s}}) \\ \theta=56.30\text{ degress} \end{gathered}[/tex]

