given the inequality:
[tex]\frac{x}{13}-10<-8[/tex]first we can add 10 on both sides to get the following:
[tex]\begin{gathered} \frac{x}{13}-10+10<-8+10=2 \\ \Rightarrow\frac{x}{13}<2 \end{gathered}[/tex]next, we can multiply both sides by 13 to solve for x. Notice that since we are multiplying by a positive number, the inequality remains the same:
[tex]\begin{gathered} 13\cdot(\frac{x}{13}<2) \\ \Rightarrow13\cdot\frac{x}{13}<2\cdot13 \\ \Rightarrow x<26 \end{gathered}[/tex]therefore, x <26