We have the next function
[tex]Q(t)=36e^{-0.06t}[/tex]a)
For answer this section we need to find the value of Q when t=24
[tex]Q(24)=36e^{-0.06(24)}=8.52=8.5\text{grams}[/tex]b)
In order to know how long will take until 1 gram of substance left we need to isolate t of the formula and Q=1
[tex]1=36e^{-0.06t}[/tex]then we isolate t
[tex]\begin{gathered} \ln (1)=\ln (36e^{-0.06t}) \\ \ln (1)=\ln (36)+\ln (e^{-0.06t}) \\ \ln (1)=\ln (36)+\ln (e^{-0.06t}) \\ \ln (1)-\ln (36)=-0.06t \\ t=\frac{\ln (1)-\ln (36)}{-0.06}=59.72=59.7\text{ hours} \end{gathered}[/tex]c)
We have the initial amount that is when t=0
[tex]Q(0)=36e^{-0.06(0)}=36[/tex]when t=10
[tex]Q(10)=36e^{-0.06(10)}=19.75[/tex]Then we calculate
[tex]\frac{19.75-36}{10-0}=-1.625=-1.6\text{ grams/hour}[/tex]Because the result is negative it is decreasing