Given:
The mass of the object is,
[tex]m=2.5\text{ kg}[/tex]
The speed of the object is,
[tex]v=4\text{ m/s}[/tex]
The compression of the spring is,
[tex]\begin{gathered} x=40\text{ cm} \\ =0.40\text{ m} \end{gathered}[/tex]
To find:
The spring constant
Explanation:
The kinetic energy of the box provides the potential energy of the spring.
If the spring constant of the spring be 'k', the potential energy is,
[tex]\frac{1}{2}kx^2[/tex]
The kinetic energy of the mass is,
[tex]\frac{1}{2}mv^2[/tex]
Now we can write,
[tex]\begin{gathered} \frac{1}{2}kx^2=\frac{1}{2}mv^2 \\ k=m\frac{v^2}{x^2} \end{gathered}[/tex]
Substituting the values we get,
[tex]\begin{gathered} k=2.5\times\frac{4\times4}{0.40\times0.40} \\ =250\text{ N/m} \end{gathered}[/tex]
Hence, the spring constant is 250 N/m.