Respuesta :

Given the quadratic equation as shown below

[tex]f(x)=-2x^2+8x-1[/tex][tex]\therefore y=-2x^2+8x-1[/tex]

To find the y intercept, set x=0 and solve for y

[tex]\begin{gathered} x=0 \\ y=-2(0^2)+8(0)-1 \end{gathered}[/tex][tex]\begin{gathered} y=0+0-1=-1 \\ \text{Thus, y-intercept is}\Rightarrow(0,-1) \end{gathered}[/tex]

To find the x-intercepts, set y=0 and solve for x

[tex]\begin{gathered} y=0 \\ 0=-2x^2+8x-1 \\ -2x^2+8x-1=0 \\ \text{Using quadratic formula} \\ a=-2,b=8,c=-1 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-8\pm\sqrt[]{8^2-4\times(-2)\times(-1)}}{2\times(-2)} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{-8\pm\sqrt[]{64-8}}{-4}=\frac{-8\pm\sqrt[]{56}}{-4} \\ x=\frac{-8\pm2\sqrt[]{14}}{-4} \end{gathered}[/tex][tex]x=\frac{-8+2\sqrt[]{14}}{-4}\text{ OR }\frac{-8-2\sqrt[]{14}}{-4}[/tex][tex]\begin{gathered} x=\frac{-8}{-4}+\frac{2\sqrt[]{14}}{-4}\text{ OR }\frac{-8}{-4}-\frac{2\sqrt[]{14}}{-4} \\ x=2-\frac{1}{2}\sqrt[]{14}\text{ OR }2+\frac{1}{2}\sqrt[]{14} \\ \text{The x-intercepts are} \\ (2-\frac{1}{2}\sqrt[]{14},0)\text{ and (}2+\frac{1}{2}\sqrt[]{14},0) \end{gathered}[/tex]

The vertex of the equation is given by

[tex]\begin{gathered} y=-2x^2+8x-1 \\ y=-2(x^2-4x)-1 \\ y=-2\lbrack(x-2)^2-4\rbrack-1\text{ ( by completing the square of the quadratic binomial)} \\ y=-2(x-2)^2+8-1 \\ y=-2(x-2)^2+7 \end{gathered}[/tex]

Given the vertex form equation as shown below

[tex]\begin{gathered} y=a(x-h)^2+k \\ \text{Vertex}\Rightarrow(h,k) \end{gathered}[/tex]

From the equation

[tex]\begin{gathered} y=-2(x-2)^2+7 \\ h=2 \\ k=7 \end{gathered}[/tex]

Thus, the vertex of the function is

[tex](2,7)[/tex]

Hence, the summary of the answer is given below

[tex]\begin{gathered} y-\text{intercept}\Rightarrow(0,-1) \\ x-\text{intercepts}\Rightarrow(2-\frac{1}{2}\sqrt[]{14},0)\text{ and (}2+\frac{1}{2}\sqrt[]{14},0)\text{ OR }(0.129,0)\text{ and }(3.871,0) \\ \text{Vertex}\Rightarrow(2,7) \end{gathered}[/tex]

RELAXING NOICE
Relax