Respuesta :

[tex]DQ=\frac{\frac{1}{2x+2h}-\frac{1}{2x}}{h}[/tex]

start by solving the subtraction of fractions in the numerator using the subtraction of fractions

[tex]\frac{a}{b}-\frac{c}{d}=\frac{a\cdot d-b\cdot c}{bd}[/tex]

Then, apply to the fractions in the numerator

[tex]\frac{1}{2x+2h}-\frac{1}{2x}=\frac{2x-(2x+2h)}{2x\cdot(2x+2h)}[/tex]

Simplify the expression at the numerator

[tex]\frac{2h}{4x^2+4xh}[/tex]

[tex]DQ=\frac{\frac{2x-2x-2h}{4x^2+4hx}}{h}[/tex]

simplify

[tex]DQ=\frac{-\frac{h}{2x^2+2xh}}{h}[/tex]

then apply the division of fractions

[tex]\begin{gathered} DQ=\frac{-h}{h\cdot(2x^2+2xh)} \\ DQ=-\frac{1}{2x^2+2xh} \end{gathered}[/tex]

I

ACCESS MORE
EDU ACCESS
Universidad de Mexico