ANSWER
The final pressure of the gas is 81.54kPa
EXPLANATION
Given that;
0. The initial volume of the gas is 14.5L
,1. The initial temperature of the gas is 135 degrees celcius
,2. The initial pressure of the gas is 135kPa
,3. The final temperature of the gas is 58.5 degrees celcius
,4. The final volume of the gas is 27.6L
Follow the steps below to find the final pressure of the gas
Step 1; Write the general gas law equation
[tex]\text{ }\frac{\text{ P1V1}}{\text{ T1}}\text{ }=\text{ }\frac{\text{ P2V2}}{\text{ T2}}[/tex]Step 2; Convert the temperature to degrees Kelvin
[tex]\begin{gathered} \text{ T K = t}\degree C\text{ + 273.15} \\ \text{ for t1 = 15.3}\degree C \\ \text{ T K = 15.3 + 273.15} \\ \text{ T K = 288.45K} \\ \\ \text{ For t2 = 58.5}\degree C \\ \text{ T K = 58.5 + 273.15} \\ \text{ T K = 331.65K} \end{gathered}[/tex]Step 3; Substitute the given data into the formula in step 1 to find the final pressure of the gas
[tex]\begin{gathered} \text{ }\frac{\text{ P1V1}}{\text{ T1}}\text{ }=\text{ }\frac{\text{ P2V2}}{\text{ T2}} \\ \\ \text{ }\frac{\text{ 135}\times\text{ 14.5}}{288.45}\text{ }=\text{ }\frac{\text{ P2}\times\text{ 27.6}}{331.65} \\ \text{ Cross multiply} \\ \text{ 135}\times\text{ 14.5 }\times\text{ 331.65 }=\text{ P2 }\times\text{ 27.6}\times\text{ 288.45} \\ 649204.875\text{ = 7961.22 P2} \\ \text{ Divide both sides by 7961.22} \\ \text{ }\frac{\text{ 649204.875}}{7961.22}\text{ }=\text{ }\frac{\cancel{7961.22}P2}{\cancel{7961.22}} \\ \text{ P2 = 81.54kPA} \end{gathered}[/tex]Therefore, the final pressure of the gas is 81.54kPa