We will use the elimination method to solve that system:
Let's look at the denominators of the coefficients for the x variable, in this case we have 2 and 6, lets convert the second equation to have 1/6 as coefficient, so:
[tex]\frac{1}{2}x-\frac{1}{5}y=1[/tex][tex]\frac{1}{2}x\cdot\frac{1}{3}-\frac{1}{5}y\cdot\frac{1}{3}=1\cdot\frac{1}{3}[/tex][tex]\frac{1}{6}x-\frac{1}{15}y=\frac{1}{3}[/tex]We already have the same coefficient, now we are going to subtract:
[tex]\frac{22}{105}y=\frac{2}{3}[/tex][tex]y=\frac{105\cdot2}{22\cdot3}[/tex][tex]y=\frac{210}{66}=\frac{105}{33}=\frac{35}{11}[/tex]We already have the value of y, now we can find the value of x by substituting in any of the equations, let's use the second one:
[tex]\frac{1}{2}x-\frac{1}{5}y=1[/tex][tex]\frac{1}{2}x-\frac{1}{5}\cdot\frac{35}{11}=1[/tex][tex]\frac{1}{2}x-\frac{35}{55}=1[/tex][tex]\frac{1}{2}x-\frac{7}{11}=1[/tex][tex]\frac{1}{2}x=1+\frac{7}{11}[/tex][tex]\frac{1}{2}x=\frac{18}{11}[/tex][tex]x=\frac{18\cdot2}{11}[/tex][tex]x=\frac{36}{11}[/tex]