Solution:
Given:
[tex](3.5\times10^{-4})(1.6\times10^{-2})[/tex]To solve,
[tex]\begin{gathered} (3.5\times10^{-4})(1.6\times10^{-2})=3.5\times1.6\times10^{-4}\times10^{-2} \\ =5.6\times10^{-4}\times10^{-2} \end{gathered}[/tex]Applying the law of exponent,
[tex]x^a\times x^b=x^{a+b}[/tex][tex]\begin{gathered} 5.6\times10^{-4}\times10^{-2}=5.6\times10^{-4+(-2)} \\ =5.6\times10^{-4-2} \\ =5.6\times10^{-6} \\ \text{Applying the negative law of exponent;} \\ x^{-a}=\frac{1}{x^a} \\ \\ 5.6\times10^{-6}=5.6\times\frac{1}{10^6} \\ =5.6\times\frac{1}{1000000} \\ =\frac{5.6}{1000000} \\ (3.5\times10^{-4})(1.6\times10^{-2})=0.0000056 \end{gathered}[/tex]Therefore,
[tex](3.5\times10^{-4})(1.6\times10^{-2})=0.0000056[/tex]