Given the triangle OPQ:
[tex]\begin{gathered} m\angle Q=90 \\ OP=96ft \\ PQ=23ft \end{gathered}[/tex]We need to find the measure of angle O
So,
As angle Q = 90, so, the hypotenuse is the side OP
The side PQ represents the opposite side to the angle O
so,
[tex]\begin{gathered} \sin O=\frac{opposite}{hypotenuse} \\ \\ \sin O=\frac{PQ}{OP}=\frac{23}{96} \\ \\ m\angle O=\sin ^{-1}\frac{23}{96}\approx13.86 \end{gathered}[/tex]Rounding to the nearest degree:
So, the answer will be: the measure of angle O = 14