ANSWER:
0.91
STEP-BY-STEP EXPLANATION:
Given:
The probability that people are unemployed = 14% = 0.14
Therefore:
The probability that people are employed = 1 - 14% = 86% = 0.86
We can determine the desired probability with a binomial probability (p = 0.14, q = 0.86 and n = 8) when x = 0, 1 and 2.
Therefore:
[tex]\begin{gathered} P(x<3)=P(x=0)+P(x=1)+P(x=2) \\ \\ P(x=0)=_8C_0\cdot(0.14)^0\cdot(0.86)^{8-0}=\frac{8!}{0!(8-0)!}\cdot(0.14)^0\cdot(0.86)^8=0.2992 \\ \\ P(x=1)=_8C_1\cdot(0.14)^1\cdot(0.86)^{7-1}=\frac{8!}{1!(8-1)!}\cdot(0.14)^1\cdot(0.86)^7=0.3897 \\ \\ P(x=2)=_8C_2\cdot(0.14)^2\cdot(0.86)^{8-2}=\frac{8!}{2!(8-2)!}\cdot(0.14)^2\cdot(0.86)^6=0.2220 \\ \\ P(x<3)=0.2992+0.3897+0.2220 \\ \\ P(x<3)=0.9109\cong0.91 \end{gathered}[/tex]Therefore, the probability is equal to 0.91