Given
[tex]\begin{gathered} N_0=100\text{ g} \\ t=25.3\text{ days} \\ N(t)=6.25\text{ g} \end{gathered}[/tex]According to law of radioactive decay,
[tex]N(t)=N_0e^{-\lambda t}[/tex]Rearranging equation in order to get rate constant,
[tex]\lambda=\frac{1}{t}\ln (\frac{N_0}{N(t)})[/tex]Substituting all known values,
[tex]\begin{gathered} \lambda=\frac{1}{25.3\text{ days}}\ln (\frac{100\text{ g}}{6.25\text{ g}}) \\ =\frac{1}{25.3\text{ days}}\ln (16) \\ =0.109day^{-1} \end{gathered}[/tex]The relation between the rate constant and the half life is given as,
[tex]\begin{gathered} \text{half life=}\frac{0.693}{\lambda} \\ =\frac{0.693}{0.109day^{-1}} \\ =6.357\text{ days} \end{gathered}[/tex]Therefore, half life of the Gold -198 is about 6.375 days.