Respuesta :

We have the expression:

[tex]\log _6\lbrack(\frac{a}{b})^4\cdot c\rbrack[/tex]

And we have to rewrite it using the properties of logarithms.

We will go step by step as:

[tex]\begin{gathered} \log _6\lbrack(\frac{a}{b})^4\cdot c\rbrack \\ \log _6\lbrack(\frac{a}{b})^4\rbrack+\log _6(c) \\ 4\cdot\log _6(\frac{a}{b})+\log _6(c)_{} \\ 4\lbrack\log _6(a)-\log _6(b)\rbrack+\log (c) \\ 4\cdot\log _6(a)-4\cdot\log _6(b)+\log (c) \end{gathered}[/tex]

Then we have:

[tex]\log _6\lbrack(\frac{a}{b})^4\cdot c\rbrack=4\cdot\log _6(a)-4\cdot\log _6(b)+\log (c)[/tex]

Answer: Option 1

4*log_6(a)-4*log_6(b)+log_6(c)

RELAXING NOICE
Relax