Respuesta :

Let's solve the given equation using completing the square:

[tex]\text{ x}^2\text{ + 10x - 24 = 0}[/tex]

Step 1: Keep x terms on the left and move the constant to the right side by adding it on both sides.

[tex]\text{ x}^2\text{ + 10x - 24 = 0}[/tex][tex]\text{ x}^2\text{ + 10x - 24 + 24 = 0 + 24}[/tex][tex]\text{ x}^2\text{ + 10x = 24}[/tex]

Step 2: Take half of the x term and square it.

[tex]\text{ x term = 10x}[/tex][tex](\frac{b}{2})^2\text{ = (}\frac{10}{2})^2=5^2\text{ = 25}[/tex]

Step 3: Add the result to both sides.

[tex]\text{ x}^2\text{ + 10x = 24}[/tex][tex]\text{ (x}^2\text{ + 10x + 25) = 24 + 25}[/tex]

Step 4: Rewrite the perfect square on the left and combine terms on the right.

[tex]\text{ (x}^2\text{ + 10x + 25) = 24 + 25}[/tex][tex](x+5)^2\text{ = 49}[/tex]

Step 5: Square root of both sides.

[tex]\sqrt{(x+5)^2}\text{ = }\sqrt{\text{49}}[/tex][tex]\text{ x + 5 = }\pm\text{ 7}[/tex][tex]\text{ x = }\pm\text{ 7 - 5}[/tex]

Step 6: Solve for x.

[tex]x_1\text{ = 7 - 5 = 2}[/tex][tex]x_2\text{ = -7 - 5 = -12}[/tex]

Therefore, there are two solutions: x = 2 and -12.

RELAXING NOICE
Relax