Question: Find the distance between the points (4, 4) and (1,8).
Solution:
Remember that the distance formula is given by:
[tex]d\text{ = }\sqrt[]{(X2_{}-X1_{}\text{ }_{})^2\text{ + }(Y2_{}-Y1_{}\text{ }_{})^2\text{ }}[/tex]In our case, we have that
(X1, Y1) = (4,4)
(X2,Y2) = (1,8)
Replacing these values in the distance formula we obtain:
[tex]d\text{ = }\sqrt[]{(1-4_{}\text{ }_{})^2\text{ + }(8-4\text{ }_{})^2\text{ }}\text{ = }\sqrt[]{(-3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ =}\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ }[/tex]that is:
[tex]d\text{ = }\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}=\sqrt[]{9\text{ + 16}^{}\text{ }}\text{ }=\sqrt[]{25\text{ }}\text{ = 5}[/tex]then, we can conclude that the distance between the points (4,4) and (1,8) is 5.