Answer:
27 times greater.
Explanation:
Cube A has an edge length of 2
[tex]\begin{gathered} \text{Volume of cube A=}2^3 \\ =8\text{ cubic units} \end{gathered}[/tex]Cube B has an edge length of 6
[tex]\begin{gathered} \text{Volume of cube B=6}^3 \\ =216\text{ cubic units} \end{gathered}[/tex]Next, we determine by how many times greater the volume of cube B than cube A.
[tex]\begin{gathered} \frac{\text{Volume of Cube B}}{\text{Volume of Cube A}}=\frac{216}{8} \\ =27 \end{gathered}[/tex]The volume of cube B is 27 times greater than cube A.