Answer:
The measure of the sides are;
[tex]\begin{gathered} AB=7.28 \\ BC=6.32 \\ AC=6.40 \end{gathered}[/tex]Classifying the triangle by its sides. The triangle is a Scalene triangle
Explanation:
We want to find the length of the triangle ABC.
Recall that the distance between two points can be calculated using the formula;
[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Given;
[tex]\begin{gathered} A(1,5) \\ B(3,-2) \\ C(-3,0) \end{gathered}[/tex]For the given points A, B and C, the distance between the points are;
For side AB;
[tex]\begin{gathered} AB=\sqrt[]{(3-1)^2+(-2-5)^2} \\ AB=\sqrt[]{2^2+(-7)^2} \\ AB=\sqrt[]{4+49} \\ AB=\sqrt[]{53} \\ AB=7.28 \end{gathered}[/tex]For side BC;
[tex]\begin{gathered} BC=\sqrt[]{(-3-3)^2+(0-(-2))^2} \\ BC=\sqrt[]{(-6)^2+(2)^2} \\ BC=\sqrt[]{36+4} \\ BC=\sqrt[]{40} \\ BC=6.32 \end{gathered}[/tex]For side AC;
[tex]\begin{gathered} AC=\sqrt[]{(-3-1)^2+(0-5)^2} \\ AC=\sqrt[]{(-4)^2+(-5)^2} \\ AC=\sqrt[]{16+25} \\ AC=\sqrt{41} \\ AC=6.40 \end{gathered}[/tex]So, the measure of the sides are;
[tex]\begin{gathered} AB=7.28 \\ BC=6.32 \\ AC=6.40 \end{gathered}[/tex]From the derived length of the sides of the triangle, classifying the triangle by its sides. The triangle is a Scalene triangle.
Because it has no equal sides.