Respuesta :

Explanation

Given:

[tex]y=x^2-6x+9[/tex]

Required: We are required to determine the discriminant of the given equation and the nature of its roots.

This is achieved thus:

We know that the formula for discriminant is given as:

[tex]D=b^2-4ac[/tex]

We also know we can determine the nature of the roots thus:

[tex]\begin{gathered} (a)\text{ }D>0\text{ \lparen two distinct real roots\rparen } \\ (b)\text{ }D=0\text{ \lparen only one real root\rparen} \\ (c)\text{ }D<0\text{ \lparen two distinct complex roots\rparen} \end{gathered}[/tex]

Therefore, we have:

[tex]\begin{gathered} y=x^{2}-6x+9 \\ where \\ a=1,b=-6,c=9 \\ \\ \therefore D=b^2-4ac \\ D=(-6)^2-4\cdot1\cdot9 \\ D=36-36 \\ D=0 \end{gathered}[/tex]

Hence, the answer is:

[tex]0;\text{ }1\text{ }real\text{ }root[/tex]

The last option is correct.

RELAXING NOICE
Relax